Feedback

Testing Analytical Methods for Antibiotic Detection in Tenebrio molitor Larvae: A Controlled Feeding Trial

Affiliation
State Institute for Chemical Analysis and Veterinary Diagnostics Freiburg, Am Moosweiher 2, 79108 Freiburg, Germany
Asendorf, Tomke;
Affiliation
State Institute for Chemical Analysis and Veterinary Diagnostics Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany
Wind, Christine;
ORCID
0000-0001-8276-4968
Affiliation
Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany;
Vilcinskas, Andreas

Background: As edible insects gain importance as sustainable protein sources, their integration into the food system requires that they meet the same safety standards as conventional animal products. This includes systematic testing for residues of pharmacologically active substances, such as antibiotics. To enable such monitoring, validated analytical methods for insect matrices are essential—but currently lacking. This study evaluates whether LC-MS/MS methods already validated for conventional animal products are suitable for detecting antibiotics in edible insects. Methods: Tenebrio molitor larvae were fed wheat flour containing 10 mg of tiamulin or chloramphenicol and 31.3 mg erythromycin per 100 g flour. The antibiotics were mixed into the feed, and their homogeneity and stability were confirmed. After seven days of feeding and a 24-h fasting period, larval samples were analyzed by LC-MS/MS. Results: All three antibiotics were detected in the insects. After seven days, mealworms contained 6.8 ± 0.3 mg/kg tiamulin, 1.4 ± 0.2 mg/kg chloramphenicol, and 224.5 ± 111 mg/kg erythromycin. Following the 24-hour fasting period, concentrations declined markedly to 0.6 ± 0.03 mg/kg, 0.2 ± 0.002 mg/kg, and 130.5 ± 0.7 mg/kg, respectively. Conclusions: The detection of all three antibiotics demonstrates that existing LC-MS/MS methods can be applied to insect matrices. Owing to the small number of replicates and the exploratory nature of the trial, these residue levels should be interpreted qualitatively as a proof of concept. The study provides a reproducible model for further feeding trials and underscores the need for more comprehensive validation. Potential drivers of antibiotic misuse in insect farming are discussed as a basis for developing and expanding testing methods to ensure the food safety of edible insects.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: © 2025 by the authors.

Use and reproduction: