Age-Dependent Redistribution of the Life-Important Enzyme in the Retina: Adult Müller Glial Cells’ Endfeet Lack Spermine Synthase Expression
Polyamine (PA) spermine (SPM) (i) plays an essential role in the function of neurons, while (ii) accumulating predominantly in glial cells by an unknown mechanism. In addition, the translocation of SPM synthesis and redistribution in the developing and maturating retinas remains unclear. Therefore, the expression of the SPM-synthesizing enzyme, spermine synthase (SpmS), was compared in rat retinas on postnatal days 3, 21, and 120 using immunocytochemistry, Western blot (WB), and ImageJ analyses. The anti-glutamine synthetase (GS) antibody identified glial cells, and DAPI labeled the cell nuclei. At postnatal day 3 (P3), the neonatal retina shows widespread SpmS expression throughout most neuroblast cells, but absent in the developing synaptic layers and Müller cell (MCs) processes. By day 21 (P20), SpmS becomes strongly expressed in neurons, and not in glia. On day 120 (P120), SpmS was observed in synaptic areas, with significantly less presence in neuronal soma and still none in MCs. WBs showed a decrease in SpmS expression during maturation. Therefore, glial cells do not synthesize SPM, and the accumulation of SPM in MCs found earlier suggests that glial cells take up SPM via a hypothetical high-affinity SPM transporter. In glia, SPM regulates glial connexin (Cx43) and potassium (Kir4.1) channels, being a key player in CNS diseases and aging.
Preview
Cite
Access Statistic




