Umbelliferone as an effective component of Rhodiola for protecting the cerebral microvascular endothelial barrier in cSVD
Objective Rhodiola is a common Chinese herb in the treatment of cerebral small vessel disease (cSVD). Umbelliferone, one of the effective components of Rhodiola, can protect the endothelial barrier. But its mechanisms are still unclear. Therefore, this study is aimed to explore mechanisms of umbelliferone of an effective component of Rhodiola in protecting the cerebral microvascular endothelial barrier in cSVD. Methods Firstly, ETCM, SwissTargetPrediction and literatures were used to screen components and targets of Rhodiola. GeneCards was used to obtain targets of cSVD. STRING and Cytoscape were utilized for building the PPI and C-T network. Metascape was utilized to construct GO and KEGG enrichment analysis. Then, molecular docking was employed to evaluate the binding ability of the compounds for their respective target molecules. Ultimately, the endothelial cell damage caused by OGD was employed to explore the protective impact of umbelliferone, a bioactive constituent of Rhodiola, on the endothelial barrier. Endothelial cell leakage and migration assays were used to assess the permeability and migration ability of endothelial cells. IF and WB techniques were employed to ascertain the expression of endothelial tight junction protein. The major target proteins and related pathways were validated by WB. Results Six effective components and 106 potential targets were identified and 1885 targets of cSVD were obtained. Nine key targets were selected. GO and KEGG enrichment analysis suggested that effects of Rhodiola in cSVD were associated with PI3K-Akt, Ras, Rap1 and MAPK signal pathways. Molecular docking results showed good binding ability between 28 pairs of key proteins and compounds. Umbelliferone of an effective component of Rhodiola can protect tight junction proteins and improve the permeability and migration ability of endothelial cells damaged by OGD through MMP9, MMP2, CCND1, PTGS2 and PI3K-Akt, Ras, Rap1 signaling pathways. Conclusion Our study systematically clarified mechanisms of Rhodiola in treating cSVD by network pharmacology and molecular docking, characterized by its multi-component, multi-target and multi-pathway effects. This finding was validated through in vitro tests, which demonstrated that umbelliferone of an effective component in Rhodiola can protect the brain microvascular endothelial barrier. It provided valuable ideas and references for additional research.
Preview
Cite
Access Statistic
