Impact of B and P Doping on the Elastic Properties of Si Nanowires
Using gradient-corrected density functional theory we investigate the mechanical properties of ultrathin boron (B) and phosphorus (P) doped silicon nanowires (SiNWs) along the [001] and [111] orientations within the PBE approximation. Both pristine and doped SiNWs under study have diameters ranging from 5 to 8 Å. Our results show that doping significantly enhances the bulk modulus ( B 0 ), shear modulus ( G V ), Young’s modulus ( Y ), and other mechanical parameters. The significant anisotropy observed in the mechanical properties of Si[111] NWs, with varying moduli along different axes, further illustrates the complex interplay between mechanical behavior and electronic structure at the nanoscale. The mechanical flexibility of SiNWs, combined with their tunable electronic properties due to quantum confinement, makes them promising candidates for advanced nanoelectronic devices, nanoelectromechanical systems (NEMS), and advanced technologies.
Preview
Cite
Access Statistic
