Feedback

Different Structures—Similar Effect: Do Substituted 5-(4-Methoxyphenyl)-1 H -indoles and 5-(4-Methoxyphenyl)-1 H -imidazoles Represent a Common Pharmacophore for Substrate Selective Inhibition of Linoleate Oxygenase Activity of ALOX15?

Affiliation
Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia;(A.Z.);(V.A.);(A.G.)
Zhuravlev, Alexander;
Affiliation
Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;(A.C.);(J.M.L.);(À.G.-L.)
Cruz, Alejandro;
Affiliation
Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia;(A.Z.);(V.A.);(A.G.)
Aksenov, Vladislav;
Affiliation
Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia;(A.Z.);(V.A.);(A.G.)
Golovanov, Alexey;
ORCID
0000-0002-7536-1869
Affiliation
Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;(A.C.);(J.M.L.);(À.G.-L.)
Lluch, José M.;
ORCID
0000-0001-8142-3192
Affiliation
Department of Biochemistry, Charite—University Medicine Berlin, Corporate Member of Free University Berlin and Humboldt University Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
Kuhn, Hartmut;
ORCID
0000-0003-0729-2483
Affiliation
Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;(A.C.);(J.M.L.);(À.G.-L.)
González-Lafont, Àngels;
ORCID
0000-0003-0543-2067
Affiliation
Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia;(A.Z.);(V.A.);(A.G.)
Ivanov, Igor

Mammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear. Here, we attempt to define a common pharmacophore, which is critical for this allosteric inhibition. We found that substituted imidazoles induce weaker inhibitory effects when compared with the indole derivatives. In silico docking studies and molecular dynamics simulations using a dimeric allosteric enzyme model, in which the inhibitor occupies the substrate-binding pocket of one monomer, whereas the substrate fatty acid is bound at the catalytic center of another monomer within the ALOX15 dimer, indicated that chemical modification of the core pharmacophore alters the enzyme–inhibitor interactions, inducing a reduced inhibitory potency. In our dimeric ALOX15 model, the structural differences induced by inhibitor binding are translated to the hydrophobic dimerization cluster and affect the structures of enzyme–substrate complexes. These data are of particular importance since substrate-specific inhibition may contribute to elucidation of the putative roles of ALOX15 metabolites derived from different polyunsaturated fatty acids in mammalian pathophysiology.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: © 2023 by the authors.

Use and reproduction: