Feedback

Renal mitochondrial restoration by gymnemic acid in gentamicin-mediated experimental nephrotoxicity: evidence from serum, kidney and histopathological alterations

Affiliation
Department of Pharmacology ,Seth G. L. Bihani S. D. College of Technical Education ,Institute of Pharmaceutical Sciences and Drug Research ,Sri Ganganagar ,Rajasthan ,India
Gumbar, Shubhangi;
Affiliation
Department of Pharmacology ,Seth G. L. Bihani S. D. College of Technical Education ,Institute of Pharmaceutical Sciences and Drug Research ,Sri Ganganagar ,Rajasthan ,India
Bhardwaj, Sudeep;
Affiliation
Department of Pharmacology ,ISF College of Pharmacy (An Autonomous College) ,Moga ,Punjab ,India
Mehan, Sidharth;
Affiliation
Department of Pharmacology ,ISF College of Pharmacy (An Autonomous College) ,Moga ,Punjab ,India
Khan, Zuber;
Affiliation
Narula Research, LLC ,Chapel Hill ,NC ,United States
Narula, Acharan S.;
Affiliation
Institute of Neurobiology ,Bulgarian Academy of Sciences ,Sofia ,Bulgaria
Kalfin, Reni;
Affiliation
King Fahd Medical Research Center ,King Abdulaziz University ,Jeddah ,Saudi Arabia
Tabrez, Shams;
Affiliation
King Fahd Medical Research Center ,King Abdulaziz University ,Jeddah ,Saudi Arabia
Zughaibi, Torki A.;
Affiliation
Department of Biochemistry ,College of Medicine ,Imam Abdulrahman Bin Faisal University ,Alkhobar ,Saudi Arabia
Wasi, Samina

Background: Nephrotoxicity refers to the toxigenic impact of compounds and medications on kidney function. There are a variety of drug formulations, and some medicines that may affect renal function in multiple ways via nephrotoxins production. Nephrotoxins are substances that are harmful to the kidneys. Purpose: This investigation examines the renoprotective effect of gymnemic acid (GA) on Wistar rats in gentamicin-induced nephrotoxicity by analyzing serum, kidney, and histopathological markers. Study-design/methods: The current study investigated the protective effect of GA at doses of 20, 40, and 60 mg/kg against gentamicin-induced nephrotoxicity in rats. Vitamin E was administered to compare the antioxidant capacity and efficacy of GA. In addition to the treatment groups, 100 mg/kg of gentamicin was administered intraperitoneal for 14 days. At the end of the study protocol, kidney homogenate, blood, and serum were evaluated biochemically. Serum creatinine, blood urea, glomerular filtration rate (GFR), mitochondrial dysfunctions, inflammatory cytokines, and renal oxidative stress were examined to assess gentamicin-induced nephrotoxicity. In addition, the impact of GA on the above-mentioned nephrotoxic markers were evaluated and further confirmed by histological analysis. Results: This study establishes a correlation between antibiotic use, especifically aminoglycosides and acute renal failure. The research demonstrates the nephrotoxic effects of aminoglycosides, inducing mitochondrial ETC-complex dysfunction, and renal tissue inflammation in experimental rats. GA’s antioxidant properties restored renal oxidative stress markers, reducing kidney inflammation and injury. Histopathological analysis revealed a significant reduction in renal injury with GA treatment. Additionally, GA demonstrated greater efficacy than Vitamin E in restoring antioxidant potential and mitochondrial enzymes. Conclusion: Consequently, our findings imply that long-term use of GA may be a suitable therapeutic strategy for reducing aminoglycoside toxicity. The current study suggests GA’s potential in treating gentamicin-induced nephrotoxicity and acute renal failure, meriting further investigation using advanced techniques.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: Copyright © 2023 Gumbar, Bhardwaj, Mehan, Khan, Narula, Kalfin, Tabrez, Zughaibi and Wasi.

Use and reproduction: