Feedback

Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying

ORCID
0000-0003-1959-3144
Affiliation
Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;(S.K.K.);(G.B.)
Ko, Suk Kyu;
Affiliation
Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;(S.K.K.);(G.B.)
Björkengren, Gabriella;
Affiliation
Department of Pharmacy, Ludwig Maximilian University of Munich, 81377 Munich, Germany;(C.B.);(G.W.)
Berner, Carolin;
Affiliation
Department of Pharmacy, Ludwig Maximilian University of Munich, 81377 Munich, Germany;(C.B.);(G.W.)
Winter, Gerhard;
Affiliation
Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark;
Harris, Pernille;
ORCID
0000-0001-9754-2663
Affiliation
Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;(S.K.K.);(G.B.)
Peters, Günther H. J.

We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipient formulations at room temperature, (ii) the ice-growth process, (iii)–(iv) the partially solvated and fully dried formulations, and (v) the reconstitution. Furthermore, coarse-grained (CG) simulations were employed to explore the protein-aggregation process in the presence of arginine. By using a coarse-grained representation, we could observe the collective behavior and interactions between protein molecules during the aggregation process. The CG simulations revealed that the presence of arginine prevented intermolecular interactions of the catalytic domain of Reteplase, thus reducing the aggregation propensity. This suggests that arginine played a stabilizing role by interacting with protein-specific regions. From the freeze-drying simulations, we could identify several protein-specific events: (i) collapse of the domain structure, (ii) recovery of the drying-induced damages during reconstitution, and (iii) stabilization of the local aggregation-prone region via direct interactions with excipients. Complementary to the simulations, we employed nanoDSF, size-exclusion chromatography, and CD spectroscopy to investigate the effect of the freeze-drying process on the protein structure and stability.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: © 2023 by the authors.

Use and reproduction: