Feedback

Licochalcone A Inhibits Prostaglandin E 2 by Targeting the MAPK Pathway in LPS Activated Primary Microglia

Affiliation
Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
Bhatia, Harsharan Singh;
Affiliation
Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
Apweiler, Matthias;
Affiliation
Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
Sun, Lu;
Affiliation
Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
Baron, Julian;
Affiliation
Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
Tirkey, Ashwini;
ORCID
0000-0002-9261-6771
Affiliation
Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
Fiebich, Bernd L.

Neuroinflammation and oxidative stress are conditions leading to neurological and neuropsychiatric disorders. Natural compounds exerting anti-inflammatory and anti-oxidative effects, such as Licochalcone A, a bioactive flavonoid present in a traditional Chinese herb (licorice), might be beneficial for the treatment of those disorders. Therefore, this study aimed to investigate the anti-inflammatory and anti-oxidative effects of Licochalcone A in LPS-activated primary rat microglia. Licochalcone A dose-dependently prevented LPS-induced PGE 2 release by inhibiting the arachidonic acid (AA)/cylcooxygenase (COX) pathway decreasing phospholipase A2, COX-1, and COX-2 protein levels. Furthermore, LPS-induced levels of the cytokines IL-6 and TNFα were reduced by Licochalcone A, which also inhibited the phosphorylation and, thus, activation of the mitogen-activated protein kinases (MAPK) p38 MAPK and Erk 1/2. With the reduction of 8-iso-PGF 2α , a sensitive marker for oxidative stress, anti-oxidative effects of Licochalcone A were demonstrated. Our data demonstrate that Licochalcone A can affect microglial activation by interfering in important inflammatory pathways. These in vitro findings further demonstrate the potential value of Licochalcone A as a therapeutic option for the prevention of microglial dysfunction related to neuroinflammatory diseases. Future research should continue to investigate the effects of Licochalcone A in different disease models with a focus on its anti-oxidative and anti-neuroinflammatory properties.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: © 2023 by the authors.

Use and reproduction: