Feedback

Biomechanical Properties of the Aortic Wall: Changes during Vascular Calcification

Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
Zhou, Jinwen;
ORCID
0000-0001-7589-9602
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
Gummi, Manasa Reddy;
ORCID
0000-0002-8552-182X
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
Greco, Anna;
ORCID
0000-0001-6248-0570
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
Babic, Milen;
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
Herrmann, Jaqueline;
ORCID
0000-0003-3071-7902
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Social Medicine, Epidemiology and Health Economics, Luisenstraße 57, 10117 Berlin, Germany
Kandil, Farid I.;
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
van der Giet, Markus;
ORCID
0000-0001-9843-2132
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
Tölle, Markus;
ORCID
0000-0001-7388-9611
Affiliation
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Hindenburgdamm 30, 12203 Berlin, Germany
Schuchardt, Mirjam

Medial vascular calcification (MAC) is characterized by the deposition of hydroxyapatite (HAP) in the medial layer of the vessel wall, leading to disruption of vessel integrity and vascular stiffness. Because currently no direct therapeutic interventions for MAC are available, studying the MAC pathogenesis is of high research interest. Several methods exist to measure and describe the pathophysiological processes in the vessel wall, such as histological staining and gene expression. However, no method describing the physiological properties of the arterial wall is currently available. This study aims to close that gap and validate a method to measure the biomechanical properties of the arterial wall during vascular calcification. Therefore, a stress–stretch curve is monitored using small-vessel-myography upon ex vivo calcification of rat aortic tissue. The measurement of biomechanical properties could help to gain further insights into vessel integrity during calcification progression.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: © 2023 by the authors.

Use and reproduction: