Feedback

Discovery of the key active compounds in Citri Reticulatae Pericarpium ( Citrus reticulata “Chachi”) and their therapeutic potential for the treatment of COVID-19 based on comparative metabolomics and network pharmacology

Affiliation
Department of Pharmacy ,Chengdu University of TCM ,State Key Laboratory of Southwestern Chinese Medicine Resources ,Chengdu ,China
Wang, Fu;
Affiliation
Department of Pharmacy ,Chengdu University of TCM ,State Key Laboratory of Southwestern Chinese Medicine Resources ,Chengdu ,China
Chen, Lin;
Affiliation
Department of Pharmacy ,Chengdu University of TCM ,State Key Laboratory of Southwestern Chinese Medicine Resources ,Chengdu ,China
Chen, Hongping;
Affiliation
Department of Pharmacy ,Chengdu University of TCM ,State Key Laboratory of Southwestern Chinese Medicine Resources ,Chengdu ,China
Yan, Zhuyun;
Affiliation
Department of Pharmacy ,Chengdu University of TCM ,State Key Laboratory of Southwestern Chinese Medicine Resources ,Chengdu ,China
Liu, Youping

Edible herbal medicines contain macro- and micronutrients and active metabolites that can take part in biochemical processes to help achieve or maintain a state of well-being. Citri Reticulatae Pericarpium (CRP) is an edible and medicinal herb used as a component of the traditional Chinese medicine (TCM) approach to treating COVID-19 in China. However, the material basis and related mechanistic research regarding this herb for the treatment of COVID-19 are still unclear. First, a wide-targeted UPLC-ESI-MS/MS-based comparative metabolomics analysis was conducted to screen for the active metabolites of CRP. Second, network pharmacology was used to uncover the initial linkages among these metabolites, their possible targets, and COVID-19. Each metabolite was then further studied via molecular docking with the identified potential SARS-CoV-2 targets 3CL hydrolase, host cell target angiotensin-converting enzyme II, spike protein, and RNA-dependent RNA polymerase. Finally, the most potential small molecule compound was verified by in vitro and in vivo experiments, and the mechanism of its treatment of COVID-19 was further explored. In total, 399 metabolites were identified and nine upregulated differential metabolites were screened out as potential key active metabolites, among which isorhamnetin have anti-inflammatory activity in vitro validation assays. In addition, the molecular docking results also showed that isorhamnetin had a good binding ability with the key targets of COVID-19. Furthermore, in vivo results showed that isorhamnetin could significantly reduced the lung pathological injury and inflammatory injury by regulating ATK1, EGFR, MAPK8, and MAPK14 to involve in TNF signaling pathway, PI3K-Akt signalling pathway, and T cell receptor signaling pathway. Our results indicated that isorhamnetin, as screened from CRP, may have great potential for use in the treatment of patients with COVID-19. This study has also demonstrated that comparative metabolomics combined with network pharmacology strategy could be used as an effective approach for discovering potential compounds in herbal medicines that are effective against COVID-19.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

License Holder: Copyright © 2022 Wang, Chen, Chen, Yan and Liu.

Use and reproduction: